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Recent experimental data for the complete wetting behavior of pure 4He and of 3He-4He mixtures exposed
to solid substrates show that there is a change of the corresponding film thicknesses L upon approaching
thermodynamically the � transition and the tricritical end point, respectively, which can be attributed to critical
Casimir forces fC. We calculate the scaling functions � of fC within models representing the corresponding
universality classes. For the mixtures our analysis provides an understanding of the rich behavior of � deduced
from the experimental data and predicts the crossover behavior between the tricritical point and the � transition
of pure 4He which are connected by a line of critical points. The formation of a “soft-mode” phase within the
wetting films gives rise to a pronounced maximum of fC below the tricritical point as observed experimentally.
Near the tricritical point we find logarithmic corrections �L−3�ln L�1/2 for the leading behavior of � dominat-
ing the contributions from the background dispersion forces.
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I. INTRODUCTION

There is growing experimental evidence for the analog of
the electromagnetic Casimir effect �1� in various critical con-
densed matter systems �2–7�. In wetting experiments the
confinement of critical fluctuations within an adsorbed liquid
film gives rise to an effective Casimir force fC between the
substrate-liquid and the liquid-vapor interfaces of the liquid
film �8–10�. Near the critical end point of the liquid the
emerging Casimir force adds to the omnipresent dispersion
forces and thus leads to a change of the thickness of the
complete wetting film. From this response one can infer the
Casimir force by subtracting the effect of the background
forces which varies smoothly near the critical end point with
temperature Tc. In accordance with finite-size scaling theory
�11� this force fC per unit area and in units of kBTc can be
expressed in terms of a universal scaling function �; its
shape depends sensitively on the type of boundary conditions
�BCs� �9� and thus on the surface universality classes the
confining surfaces belong to �12�.

Capacitance measurements of the equilibrium thickness of
4He wetting films near the superfluid temperature T� of the
critical end point of the � line �2,7� quantitatively support the
theoretical predictions of fC for the bulk universality class of
the XY model with symmetric Dirichlet-Dirichlet BCs �O ,O�
forming the so-called ordinary �O� surface universality class
�12�. Such BCs correspond to the case that the quantum-
mechanical wave function of the superfluid state vanishes at
both interfaces, giving rise to an attractive Casimir force
�fC�0� �9,10�. However, the available theoretical results
have a limited range of applicability, i.e., T�T� and T�T�.
Above and at T� explicit field-theoretical calculations within
the �-expansion scheme are available �13,14�. For tempera-
tures well below T� there are calculations which take into
account capillary-wavelike surface fluctuations in the
asymptotic limit of thick films, predicting a leveling off of
the scaling function for large negative scaling variables �15�,
i.e., T�T�, in qualitative agreement with the experimental

observations. So far there are no theoretical results available
for the critical region below T� which provide an understand-
ing of the deep minimum of the experimental scaling func-
tion �approximately 20 times deeper than its value at T��.

3He-4He mixtures near their tricritical end point �see Fig.
12 in Ref. �14�� are another critical system for which wetting
experiments have been performed recently �4,5�. The tricriti-
cal end point with temperature Tt is the point in the 3He-4He
phase diagram where the line signalling the onset of super-
fluidity joins the top of the two-phase coexistence region for
phase separation into a 4He-rich superfluid phase and a
3He-rich normal phase. The mixture belongs to a bulk uni-
versality class different from that of pure 4He and, because
its upper critical spatial dimension d* equals 3, the actual
physical system is characterized by rational mean-field criti-
cal exponents �up to logarithmic corrections� �16,17�. The
capacitance measurements of the wetting film thickness of
the mixture reveal a repulsive Casimir force fC around the
tricritical end point which suggests nonsymmetric BCs for
the superfluid order parameter �OP�. The probable physical
mechanism behind such a BC is that within 3He-4He wetting
films a 4He-rich layer forms near the substrate-liquid inter-
face, which may become superfluid already above the line of
onset of superfluidity in the bulk �18� whereas the lighter
3He has a preference for the liquid-vapor interface. Thus the
two interfaces impose a nontrivial concentration profile
which in turn couples to the superfluid OP.

For this system, recently �19� we briefly reported explicit
model calculations which demonstrate that the concentration
profile indeed induces indirectly nonsymmetric BCs for the
superfluid OP. For symmetry-breaking �+� BCs at the
substrate-liquid interface and Dirichlet �O� BCs at the liquid-
vapor interface we calculated the Casimir force and found a
semiquantitative agreement with the experimental data given
in Ref. �4�. Moreover, we formulated theoretical predictions
for the behavior of fC in the crossover regime between the
tricritical point and the � transition of pure 4He which are
connected by a line of critical points and provided the uni-
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versal leading behavior of the Casimir force at the tricritical
point.

The purpose of the present study is to elucidate the details
of the two complementary approaches used in Ref. �19� and
to extend them in order to obtain additional results both for
the tricritical 3He-4He mixture and the critical pure 4He. The
presentation is organized as follows: In Sec. II we discuss the
universal properties of the Casimir force. As already men-
tioned above, for the present tricritical behavior the upper
critical dimension d* equals 3 and therefore the thermody-
namic functions of three-dimensional systems exhibit power-
law behaviors with critical exponents taking their classical
values. However, logarithmic corrections to the mean-field
�MF� behavior are expected under experimental conditions
�17�. Using field-theoretical methods and renormalization-
group �RG� analyses we obtain the leading asymptotic be-
havior of the Casimir force at the tricritical point. As a func-
tion of the film thickness L it has the form of a power law
multiplied by a fractional power of a logarithm and by the
universal Casimir amplitude. In addition, we also derive the
form of the finite-size scaling for the Casimir force in the
vicinity of the tricritical point. As expected �17�, also the
arguments of the associate scaling function acquire logarith-
mic corrections. These scaling functions are compared with
the ones deduced from the experimental data in Ref. �4�. In
Sec. III we study within mean-field theory �MFT� films of
the lattice vectoralized Blume-Emery-Griffiths �VBEG�
model �20� which belongs to the same universality class as
the 3He-4He mixture but is simple enough to allow for sys-
tematic studies of fC along all thermodynamic paths fol-
lowed in the wetting experiments of Ref. �4�. This facilitates
the exploration of the crossover between the tricritical point
Tt and the line of critical points and the coexistence region
below Tt. This enables us to follow the Casimir force upon
continuously switching the bulk universality class �from tri-
critical to critical� by changing the concentration of the
3He-4He mixture. The scaling functions corresponding to
thermodynamic paths of constant concentration of the two
components of the 3He-4He mixtures are calculated and
compared with the corresponding experimental data in Ref.
�4�. As a limiting case the VBEG model can describe also a
film of pure 4He which is studied in Sec. IV within MFT.
The scaling function of the corresponding Casimir force is
obtained in the critical region below T� and compared with
that extracted from the experimental data in Ref. �2�. We also
compare these results with the mean-field predictions which
follow from the Landau-Ginzburg theory in the film geom-
etry with suitable BCs. In Sec. V we discuss the theoretical
results obtained within the VBEG model and assess their
relevance for interpreting the experimental data. We con-
clude with a summary and an outlook in Sec. VI.

II. UNIVERSAL PROPERTIES

For film geometries, in this section we investigate the
universal properties of the Casimir force near tricriticality. In
general two-component systems are characterized by the or-
dering density � and its conjugate field h, and by a nonor-
dering density x and its conjugate field �. For liquid 3He-4He

mixtures, �, x, and � correspond to the superfluid OP, to the
3He concentration, and to the difference between the chemi-
cal potentials of the 3He and 4He components, respectively,
whereas the field h conjugate to the superfluid OP is experi-
mentally not accessible.

A. Scaling function from Landau-Ginzburg theory

In order to capture universal properties we consider the
standard dimensionless O�n�-symmetric Landau-Ginzburg
�LG� Hamiltonian for a tricritical system in the film geom-
etry:

H��� =� dd−1x�
0

L

dz�1

2
����2 +

r0

2
�2

+
u0

4!
��2�2 +

v0

6!
��2�3� , �1�

where L is the film thickness, � is the n-component order
parameter �OP� �n=2 corresponds to the XY universality
class�, and z is the coordinate normal to the confining sur-
faces; r0, u0, and v0 are bare coupling constants depending,
inter alia, on the temperature T and the nonordering field �.
r0�u0�=0 and u0�0 define the critical line, whereas at the
tricritical point one has r0=u0=0, v0�0. The semi-infinite
version of Eq. �1� has been studied in the context of surface
critical behavior �21�. In the film geometry the Casimir force
per area A of the cross section of the film and in units of
kBTt,

fC 	 − �� fex/�L� = 
Tzz� , �2�

is given by the thermal average of the stress tensor compo-
nent Tzz �9�:

fex�L� 	 �f − fb�L/�kBTt� , �3�

where f is the total free energy of the film per volume V
=LA and fb is the bulk free energy density. For large L the
excess free energy can be decomposed into surface and
finite-size contributions: fex�L�= fs,1+ fs,2+	f�L�. The stress
tensor is given by �9�

Tij = �i� · � j� − 	ijL − �d − 2�/�4�d − 1����i� j − 	ij�
2��2,

�4�

where L is the integrand in Eq. �1�. In what follows we
assume �= (m�z� ,0 , . . . ,0), i.e., we neglect helicity. For
nonsymmetric BC its relevance for the behavior of the Ca-
simir force is not clear because the OP has the additional
freedom to rotate across the film by a position dependent
angle 
�z�; the analyses of the role of helicity is left for
future research. Within MFT for the LG Hamiltonian, the
determination of the tricritical Casimir force in the film ge-
ometry starts from the Euler-Lagrange equation

m��z� = r0m�z� +
u0

6
m3�z� +

v0

120
m5�z� . �5�

As discussed in Sec. I, �+,O� boundary conditions, with the
substrate at z�0 and vapor at z�L,
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m�0� = + � and m�L� = 0 �6�

are supposed to mimic the experimental system of 3He-4He
wetting films as studied in Ref. �4�. According to Eq. �4� the
stress tensor component Tzz evaluated within MFT and with
�= (m�z� ,0 , . . . ,0) for the OP �in the present MF approach
we omit the brackets 
·� indicating the thermal average�
yields

Tzz =
1

2
�m��L��2. �7�

In deriving this expression we have used the property that
Tzz=const throughout the film including the surfaces and we
have chosen z0=L as the point of reference at which Tzz is
evaluated. Accordingly, the first integral of Eq. �5� is given
by

�m+,O� �z��2 = 2Tzz + r0m+,O
2 �z� +

u0

12
m+,O

4 �z� +
v0

360
m+,O

6 �z� .

�8�

Dimensional analysis yields that, at the upper critical dimen-
sion d=d*=3, m�z ,L ,r0 ,u0 ,v0� can be expressed in terms of
a dimensionless scaling function �+,O:

m+,O�z,L,r0,u0,v0� = � v0

360
−1/4

L−1/2�+,O�z/L,r0L2,u0L;v0� ,

�9�

where v0 is dimensionless. Similarly, within this approach
the normalized Casimir force can be expressed in terms of a
dimensionless scaling function �+,O

MF:

Tzz = fC�L,r0,u0,v0� = � v0

90
−1/2

L−3�+,O
MF�r0L2,u0L,v0� .

�10�

Equation �8� can be written in terms of these scaling func-
tions �+,O and �+,O

MF:

��+,O� �x��2 = �+,O
MF + r0L2�+,O

2 �x� + � 5

2v0
1/2

u0L�+,O
4 �x�

+ �+,O
6 �x� , �11�

where x=z /L. In turn, Eq. �11� can be integrated directly
yielding the implicit equation

1 = �
0

� d�

��+,O
MF + r0L2�2 + � 5

2v0
1/2

u0L�4 + �6

�12�

for the scaling function �+,O
MF�r0L2 ,u0L ,v0�. Note that the

coupling constant v0�0 remains undetermined within mean-
field theory and enters into �+,O

MF only in the combination
v0

−1/2u0L. Under the renormalization group flow, at the upper
critical dimension �d*=3� the renormalized coupling con-
stant v associated with v0 tends to its fixed point value v*

=0. This RG flow generates logarithmic corrections to scal-
ing due to the singular dependence of the scaled quantities
on v �see, e.g., Eqs. �9� and �10��. With the transformation

� = ��+,O
MF�1/6p �13�

for the integration variable one can rewrite Eq. �12� in the
more convenient but still implicit form

��+,O
MF�1/3 = �

0

� dp
�1 + ap2 + bp4 + p6

, �14�

where the dimensionless parameters a and b are given by

a = r0L2��+,O
MF�−2/3 and b = � 5

2v0
1/2

u0L��+,O
MF�−1/3.

�15�

The numerical evaluation of the scaling function amounts to
the following steps: �i� specifying values for a and b, �ii�
evaluating �+,O

MF from Eq. �14�, �iii� determining the values of
the two scaling variables r0L2 and v0

−1/2u0L from Eq. �15�.
From the symmetry properties of the order-parameter pro-

file for the symmetry breaking opposing boundary conditions
�+,−� it is obvious that within MFT the force for a film of
thickness L in this case can be obtained from Eq. �14�, hold-
ing for the �+,O� BC, and Eq. �10� by replacing L�L /2
therein. This implies �+,−

MF�x ,y�=8�+,O
MF�x /4 ,y /2�. In the fol-

lowing we shall refer only to the �+,O� BC and drop the
corresponding index.

The precise dependence of r0 and u0 on the thermody-
namic fields T and � is not known. Therefore it is not obvi-
ous how to follow in terms of these variables a specified path
in the phase diagram such as the experimental path of fixed
3He concentration. However, assuming that r0 and u0 are
analytic functions of T and � in the neighborhood of the
phase transition one can use the expansion �17�:

r0 = A����T − T����� + O��T − T�����2� and

u0 = B��� + O��T − T������ , �16�

where T���� denotes the critical temperatures of the line of
continuous phase transitions as a function of �, and B���
and A��� are positive and nonzero on this line; B���=0 at
the tricritical point.

In view of comparisons with experimental data, which we
shall discuss later, it is useful to mention the relation between
the parameters r0 and u0 and the experimentally controllable
thermodynamic fields T−Tt and �−�t where �=�t at the
tricritical point and T���t�=Tt. These “deviating fields” are
not the proper scaling fields and it was shown �22� that a
suitable �dimensionless� choice is provided by

t 	 �T − Tt�/Tt and g 	 �� − �t�/�kBTt� + a�t , �17�

where a� is the slope of the line tangential to the phase
boundary at the tricritical point. Thus for t→0 with g=0 the
tricritical point is approached tangentially to the phase
boundary. Instead of t one could also use a scaling variable
which is orthogonal to the loci g=0; this would not affect the
leading singular behavior for t ,g→0 �17�. Near the tricritical
point B���, A���, and T���� can be expanded in terms of g
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and t. Using Eq. �17� one has T−T����=T−Tt+ �a�kB�−1��
−�t�+O(��−�t�2)= �a��−1Ttg+O(��−�t�2). Expressing �
and T as a function of t and g one finds

r0 = A1g + A2t2 + O�g2,gt� and

u0 = B1t + B2g + O�gt,g2,t2� , �18�

where A1�0, B1�0, A2, and B2 are constants. Due to the
analytic structure of Eq. �16� and because ��−�t�=kBTt�g
−a�t� the coefficient r0 does not contain a term linear in t so
that u0� t+O�t2� if r0=0. On the other hand, r0�g+O�g2� if
u0=0.

B. Logarithmic corrections at T=Tt

At the tricritical point a=b=0 Eq. �14� reduces to

��MF�1/3 = �
0

�

dp/�1 + p6 � 1.402 18. �19�

Accordingly, in units of AkBTt, the MFT result for the tric-
ritical Casimir force fC

t in the case of the �+,O� BC is �see
Eq. �10��

fC,t
MF � 2.756 84�90/v0�1/2L−3. �20�

In d=3−� the MFT result at tricriticality �Eq. �20�� yields the
leading contribution in a perturbation series, i.e.,


Tzz� = 
Tzz�0 + 
Tzz�1 + O�v0
1/2�

= � v0

90
−1/2

tzz + 
Tzz�1 + O�v0
1/2� , �21�

where both tzz	2.756 84L−3 and 
Tzz�1 do not depend on v0.
After removing ultraviolet singularities via renormalization
�R� the asymptotic scaling behavior of fC follows from sub-
stituting the renormalized v by the appropriate fixed-point
value v*�. At d=d*, and under spatial rescaling by a di-
mensionless factor �, v flows to its RG fixed point value
v*=0 according to �21�

v̄��� =
240�2

3n + 22
� 1

�ln � �
+ c

ln�ln � �
ln2�

+ ¯  , �22�

where v̄��� is the running coupling constant with the initial
condition v̄R��=1�=vR. With the rescaling factor �= l0 /L,
where l0 is a microscopic length scale of the order of a few
Å, this yields a logarithmic correction to the power-law de-
pendence on L of the tricritical Casimir force:

fC
t � 0.54�3n + 22�1/2�ln�L/l0��1/2L−3

��1 −
c

2

ln�ln�L/l0��
�ln�L/l0��

+ ¯  . �23�

Determining the constant c requires to extend the analysis in
Ref. �21� which is left for future research. Gaussian fluctua-
tions give contributions of at least O�v0� which are therefore
of order L−3 and thus subdominant �see Eq. �23��. We com-
pare Eq. �23� for n=2 with the data obtained by Garcia and
Chan �4� for their experimental value of L�520 Å and for

l0�1.3 Å, the experimental value of the correlation length
amplitude �0=��t� / �t�−�t with �t=1 for concentration fluctua-
tions below Tt in the superfluid phase �23�. For these values
Eq. �23� predicts

�t 	 fC
tL3 � 6.96 �24�

whereas �t
exp=8.4±1.7. The value of the theoretical function

�t at Tt, with l0 between 1 and 2 Å, is in reasonable agree-
ment with the measured �t

exp. In order to extract the actual
value of the universal Casimir amplitude �i.e., the numerical
prefactor 0.54�28=2.86 in Eq. �23�� the experimental data
call for a re-analysis based on the functional form given by
Eq. �23�, which renders the comparison independent of the
choice for l0, and requires us to take into account the correc-
tion terms given in Eq. �23�. We want to emphasize that the
tricritical Casimir force offers the opportunity to observe the
so far experimentally elusive logarithmic corrections associ-
ated with tricritical phenomena. We note that at tricriticality
the Casimir force fC

t�L→ � � dominates over the background
dispersion forces. This differs from the case of critical Ca-
simir forces for which both contributions decay with the
same power law. It is interesting that the Casimir amplitude
for the present �+,O� BC is the same as for the �+, + � BC
considered in Ref. �24�.

C. Logarithmic corrections to the scaling function

The scaling properties of the Casimir force follow from
the renormalized finite-size contribution to the excess free
energy �Eq. �3��. For carrying out the renormalization proce-
dure of this quantity two aspects are relevant. First, for the
film geometry, the width L of the system is not renormalized
�11�. Second, in the renormalized �R� finite-size contribution
to the free energy 	f�L� �see the text before Eq. �4�� the
contributions from the additive counter terms cancel and one
has �12,25�:

	f R�r,u,v;�,L� = 	f�r0,u0,v0;L� , �25�

where the bare quantities u0, r0, and v0 are expressed in
terms of renormalized ones r, u, and v; � is an arbitrary
momentum scale. Since we are not considering correlation
functions at the surface, all renormalization factors Z are the
same as those in the bulk �12,21�:

r0 = Zrr + u2�−2�P, u0 = Zuu, v0 = 2�2Zvv , �26�

where the dimensions of the coupling constant are �r0�=�2,
�u0�=�1+�, and �v0�=�2�. Explicit perturbative results for the
tricritical bulk renormalization functions Zr, P, Zu, and Zv are
known �see, e.g., Refs. �17,21��. From Eq. �25� the RG equa-
tion can be derived in a standard fashion by exploiting the
fact that 	f�r0 ,u0 ,v0 ;L� is independent of �. Because in Eq.
�25� there are no additive renormalization terms it follows
that 	f R�L� satisfies the following homogeneous RG equa-
tion �12�:

�� � � + �
�=r,u,v

�����	fR�L� = 0, �27�

where ���r ,u ,v ;��	����0� and ���0 denotes derivatives
with respect to � at fixed bare interaction constants for �
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=r ,u ,v. The RG equation is solved by using the method of
characteristics �see, e.g., Ref. �26��:

	fR�r�,u,v,�;L� = 	fR
„r̄����, ū���, v̄���;� � ,L… , �28�

where � is again a dimensionless spatial rescaling factor,
�̄��� are the running coupling constants with the initial con-
dition �̄�1�=�, and due to the form of the renormalization of
r0 �see Eq. �26�� the new variable r� is given by �17,21�

r� = r + w�v,��u2. �29�

For an explicit expression of w�v ,�� see Refs. �17,21�.
Equation �28� summarizes the RG transformation and the
nonrenormalization of L. Using dimensional analysis one ob-
tains

	fR�r�,u,v,�;L�

= �� � ��d−1�	fR� r̄����
�� � �2 ,

ū���
�� � �4−d ,

v̄���
�� � �2�3−d� ;1,L� �  .

�30�

The desired asymptotic scaling behavior of 	fR follows by
substituting on the right-hand side of Eq. �30� the appropriate
fixed-point values for the running coupling constants r̄�, ū,
and v̄. The infrared stable fixed point lies at v*= �240/ �3n
+22���+O��2� �21�. Upon approaching the upper critical di-
mension v*→0 and for �→0 the relevant logarithmic cor-
rections to the classical exponents are generated by the flow
of the coupling constants under the RG transformation �
→0. In the limit �→0, v̄��� is given by Eq. �22�. The run-
ning variables r̄��l� and ū�l� can be written as r̄����
=Er�� ;v�r� and ū���=Eu�� ;v�u. A straightforward analysis
�17,21� shows that Er�� ;v�→const and Eu�� ;v�
��ln � �−2�n+4�/�3n+22� for �→0. Choosing �=1/ l0, ��L
= � �L / l0�=1, and omitting the constant factor Er we obtain
the following scaling form for 	f:

	fR�r�,u,v,�;L�

= L−2	fR
„r�L2,uL�ln�L/l0��−2�n+4�/�3n+22�, �ln�L/l0��−1;1,1… .

�31�

Due to Eq. �2� the scaling form for the Casimir force follows
from Eq. �31� as

fC�r�,u,v;L�

� L−3�„r�L2,uL�ln�L/l0��−2�n+4�/�3n+22�, �ln�L/l0��−1
… .

�32�

The scaling function � is given in terms of 	fR�z1 ,z2 ,z3 ,1�
as �=2	fR+2z1��	fR /�z1�−z2��	fR /�z2�. The higher-order
terms neglected in Eq. �32� are of the form

L−3�ln�L/l0��−1�2�n + 4�/�3n + 22��z2��	fR/�z2�

+ L−3�ln�L/l0��−1z3��	fR/�z3� + L−3�− 1

+ 2c�ln�ln�L/l0���/ln3��L/l0�����	fR/�z3� .

The third term in the latter expression stems from the correc-
tion to z3 �see Eqs. �30� and �22��.

At the upper critical dimension the asymptotic critical be-
havior obtained from the perturbative RG calculations within
the Gaussian approximation is expected to be exact. How-
ever, at the lowest order, often referred to as renormalized
mean-field theory �RMF�—which yields the free energy cor-
rectly with the leading logarithms—one neglects the contri-
butions stemming from the Gaussian fluctuations and re-
places the scaling function by its mean-field-like form but
with the rescaled arguments.

Applying this reasoning to the free energy we use
the mean-field result given by Eqs. �10� and �12� with r0
replaced in favor of r� according to Eq. �29� with
w(v̄��� ,����)→const as �→0, u0 replaced by u � ln�L /
l0��−2�n+4�/�3n+22�, and v0 replaced by ��240�2� / �3n
+22�� � ln�L / l0��−1 to obtain at lowest order

fC
RMF � �3n + 22

8�2/3
1/2

�ln�L/l0��1/2L−3

��MF
„r�L2,uL�ln�L/l0��−2�n+4�/�3n+22�, �ln�L/l0��−1

… .

�33�

In the following we want to compare the behavior of the
MF and RMF expression for the Casimir force. As we have
already stressed before, fC calculated within the MF ap-
proach depends on the nonuniversal and dimensionless pa-
rameter v0 �see Eq. �10��. Upon comparing with experimen-
tal data this parameter can be used to fit the amplitude of the
Casimir force, because v0

−1/2 appears �albeit not exclusively�
as a prefactor of the scaling function. The factor v0

−1/2, which
multiplies the coupling constant u0 �see the text after Eq.
�12��, is absorbed in the definition of the scaling variable.

In Fig. 1 we have plotted two curves: �i� �̄MF�r0L2

=0 ,yMF�= fCL3�v0 /90�1/2 as a function of yMF

= �5/ �2v0��1/2u0L �see Eq. �12��. Here, the nonuniversal fac-
tor v0

−1/2 is absorbed in the definitions of the scaling function
and of the scaling variable. As already mentioned before u0

� t if r0=0, so that u0L� tL. �ii� fCL3	 �̄RMF�0,yRMF�
= �28/ �8�2 /3��1/2�ln�L / l0��1/2�MF�0,yRMF� �for n=2�, where
yRMF=uL�ln�L / l0��1/14. Here, renormalization fixes the am-
plitude of the Casimir force replacing the nonuniversal pref-
actor � v0

90
�−1/2

�see Eq. �10�� of the scaling function by the
amplitude and the logarithmic correction to the L depen-
dence. The scaling variable yRMF includes the logarithmic
correction �ln�L / l0��−2�n+4�/�3n+22� to u and the additional loga-
rithmic term �ln�L / l0��1/2 stemming from the factor
�5/ �2v0��1/2 �see yMF and Eq. �12��. The numerical factor
7 / �24�2� has been included in the definition of u. For com-
parison with experimental data this factor can be combined
with the nonuniversal constant of proportionality between u
and t. For the plot we have chosen the experimental value for
L / l0, i.e., 520 Å/1.3 Å. The shapes of both scaling functions
are similar but the RMF result gives the correct value for the
Casimir amplitude and the correct L dependence of the scal-
ing function. This should be helpful for interpreting experi-
mental data obtained for different film thicknesses.

In Fig. 2 we show the corresponding results for u=0 so
that r�=r �see Eq. �29��, r� t, and rL2�gL2. We find that for
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u=0 both scaling functions decay much faster to zero than
for r=0.

For r0=0 one has u� t so that, up to the logarithmic cor-

rections, the scaling function �̄MF�0,yMF� should correspond
to the experimental curve ��tL� in Fig. 3 for the tricritical
concentration �4�. �We note that the argument of the experi-
mental curve is given in units of Å.� The solid line in this

figure represents �̄MF�0,yMF� suitably adjusted with respect
to the parameter v0 such that the Casimir amplitude and the
position of the maximum equal the experimental ones �4�.

III. VECTORALIZED BLUME-EMERY-GRIFFITHS
MODEL

Based on the motivation provided in the Introduction, in
this section we extend the VBEG model to the film geometry
and study 3He-4He mixtures.

A. Model

We consider a three-dimensional slab of a simple cubic

lattice consisting of L̄ parallel �100� lattice layers with lattice

spacing a so that L= L̄a. Each layer has Ā=A /a2 sites, la-
beled i , j , . . ., which are associated with an occupation vari-
able ti=0,1 and a phase �i �0��i�2�� which mimics the
phase of the 4He wave function and thus renders the XY bulk

universality class �n=2�. A 3He �4He� atom at site i corre-
sponds to ti=0�1� so that in the bulk X=1− 
ti� is the 3He
concentration. Unoccupied sites are not allowed so that the
model does not exhibit a vapor phase. Accordingly this
model does not allow for the occurrence of a tricritical end
point. However, we expect that the universal properties we
are interested in are the same for tricritical points and tric-
ritical end points. The Hamiltonian consists of bulk and sur-
face contributions H=Hb+Hs with

0 10 20 30 40 50
y

1

2

3

4

5

6

7
ϑ(

0,
y)

ϑ MF
(0,y

MF
)

ϑ RMF
(0,y

RMF
)

FIG. 1. �Color online� Dimensionless MF scaling function

�̄MF�r0L2=0,yMF�= fCL3�v0 /90�1/2 �see Eq. �10�� with yMF

= �5/ �2v0��1/2u0L� tL plotted together with the renormalized mean-

field scaling function fCL3= �̄RMF�0,yRMF� �see Eq. �33� and the
main text� with yRMF= ûL�ln�L / l0��1/14, û=7u / �24�2�, and L / l0

=400. �̄MF�0,yMF→ � ��11.82/yMF �thin dash-dotted line� and

�̄MF�0,yMF→0��2.76−0.605yMF �thin dashed line�. The

asymptotic behavior of �̄RMF�0,yRMF� can be obtained from the one

of �̄MF�0,yMF� by multiplying the ordinate by the factor
�28/ �8�2 /3��1/2�ln�L / l0��1/2 and the abscissa by the factor
�ln�L / l0��1/14. These limiting behaviors have been inferred from
asymptotic expansions of Eq. �14�.
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2

4

6

ϑ(
x,

0)

ϑMF
(x,0)
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(x,0)

FIG. 2. �Color online� Dimensionless MF scaling function

�̄MF�xMF ,u0=0�= fCL3�v0 /90�1/2 �see Eq. �10�� with xMF=x=r0L2

plotted together with the renormalized mean-field scaling function

fCL3= �̄RMF�xRMF ,0� �see Eq. �33� and the main text� with xRMF

=x=rL2 and L / l0=400. �̄MF�xMF→ � ,0��8�xMF�3/2e−2�xMF�1/2

�thin dash-dotted line� and �̄MF�xMF→0,0��2.76−0.5xMF �thin

dashed line�. The asymptotic behavior of �̄RMF�xRMF ,0� can be

obtained from the one of �̄MF�xMF ,0� by multiplying the ordinate
by the factor �28/ �8�2 /3��1/2�ln�L / l0��1/2; the abscissa remains the
same.

�
�

�
�

�

� � �

�

� 	

FIG. 3. Experimental data from Ref. �4� for the scaling func-
tions �= fCL3 for the Casimir force in 3He-4He films of thicknesses
L along various paths of fixed 3He concentration �given in the fig-
ure� close to the tricritical concentration Xt=0.672. The scaling
variable is in units of Å. The solid line corresponds to the tricritical
mean-field scaling function �4� calculated for r0=0 �i.e., a=0 in Eq.
�15�� and suitably adjusted �see the main text�; t= �T−Tt� /Tt.

MACIOŁEK, GAMBASSI, AND DIETRICH PHYSICAL REVIEW E 76, 031124 �2007�

031124-6



Hb = − J�

ij�

titj cos��i − � j� − K�

ij�

titj + ��
i

ti, �34�

where the first two sums run over nearest-neighbor pairs and
the last one is over all lattice sites, except those at the sur-
face. In this lattice gas model of 3He-4He binary mixtures the
coupling constant K and the field � are related to the effec-
tive �He-�He interactions K�� �see, e.g., Ref. �27��,

K = K33 + K44 − 2K34, �35�

and to the chemical potentials �3 and �4 of 3He and 4He,
respectively,

� = �3 − �4 + 2q�K33 − K34� , �36�

where q is the coordination number of the lattice �q=2d,
where d is the spatial dimension of the system; q=6 in the
present case�. In the liquid the effective interactions K�� are
different for different � and � due to the differences in mass
and of statistics between 3He and 4He atoms.

The properties of the model described by the bulk Hamil-
tonian Hb have been studied within MFT and by Monte
Carlo simulations in d=3 �20�. In contrast to its two-
dimensional version, for which there is no true tricritical
point for any value of the model parameters, in d=3 for
reasonable values of the interaction parameters the resulting
phase diagram resembles that observed experimentally for
3He-4He mixtures, for which phase separation occurs as a
consequence of the superfluid transition �see Fig. 4�. The
form of the surface Hamiltonian Hs should capture the phe-
nomenon of superfluid film formation near a wall in 3He-4He
mixtures �18� which generates an effective repulsion of 3He
atoms by the wall. The van der Waals interactions between
the wall and 3He or 4He atoms are equal. However, 3He
atoms occupy a larger volume because of their larger zero-
point motions. This gives rise to the preferential adsorption
of 4He atoms at the substrate-fluid interface, which may in-
duce a local superfluid ordering and an enrichment of 3He
near the opposing fluid-vapor interface. Here we choose the
following form for Hs:

Hs = 	��l��
i

�l�

ti + 	��r��
i

�r�

ti, �37�

where the first sum runs over the sites of the first layer and
the second over those in the Lth layer of the lattice. The
differences 	��l�	��l�−� and 	��r�	��r�−� are measures
of the relative preferences of 4He atoms for the two surfaces
such that 	��l��0 corresponds to the preference of 4He at-
oms for the solid substrate.

B. Mean-field theory

We have studied the above model for the film geometry
within mean-field theory. We have employed the variational
method based on approximating the total equilibrium density
distribution by a product of local site densities �i �see, e.g.,
Ref. �28��. The corresponding variation theorem for the free
energy reads

F � F� = Tr��H� + �1/��Tr�� ln �� , �38�

where F is the exact free energy and F� is an approximate
free energy associated with the density distribution �; �
=1/ �kBT�. The minimum of F� with respect to � subject to
the constraint Tr�=1 is attained for the equilibrium density
distribution �=e−�H /Tr�e−�H�. Within mean-field theory the
density distribution in the film geometry is approximated by

� = �0 = ĀL�
i=1

L

�i, �39�

i.e., the density distribution is constant within each layer par-
allel to the surfaces but varies from layer to layer. We treat
the local layer density �i as a variational ansatz, and the best
functional form in terms of ti and �i is obtained by minimiz-

ing F�0
/ Ā+� Tr��i� with respect to �i and with � as a

Lagrange multiplier in order to implement Tr �=1. This
leads to

�i = e−�hi/Tr�e−�hi� , �40�

where hi is the single-layer mean field given by

0.25 0.30 0.35 0.40
3
He concentration X

0.60

0.65

0.70

0.75

T
/T

s(X
=

0)

A

S

two-phase region

normal

superfluid

Ts(X)

FIG. 4. �Color online� Bulk phase diagram for the VBEG model
obtained within MFT for K /J=0.5 and ��l� /J=−3 exhibiting the
line Ts�X� of continuous superfluid transitions in the bulk �long-
dashed line�, the phase separation curves �solid lines�, the tricritical
point A= (Tt /Ts�0�=2/3 ,Xt=1/3). In a semi-infinite system there is
a �short-dashed� line of continuous surface transitions which merges
with the line Ts�X� of bulk critical points at the special transition
point S= (TS /Ts�0��0.759,XS�0.241). Upon crossing this surface
transition line a thin film near the surface becomes superfluid al-
though the bulk remains a normal fluid. Vertical lines represent
thermodynamic paths along which the Casimir force has been cal-
culated �cf. Fig. 5�. �, � �A�, �: state points which will be con-
sidered in Fig. 7.
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hi = − J�Mi−1
�1� + q�Mi

�1� + Mi+1
�1� �ti cos �i − J�Mi−1

�2� + q�Mi
�2�

+ Mi+1
�2� �ti sin �i − K�Qi−1 + q�Qi + Qi+1�ti + ��i�ti, �41�

where ��i�=� for i�1, L̄, and ��i�=��l����r�� for i=1�L̄�. We
have introduced the following order parameters:

Qi 	 1 − X�i� = Tr�ti�i� �42�

and

Mi
�1� = Tr��iti cos �i�, Mi

�2� = Tr��iti sin �i� . �43�

Qi= 
ti� corresponds to the concentration profile of 4He,
X�i�=1− 
ti� to the concentration profile of 3He, and
Mi

�1� ,Mi
�2� are the components of the two-component super-

fluid OP profile Mi. q� is the in-layer coordination number
while each site �but not in the first and last layer� is con-
nected to q� atoms in each adjacent layer and q=q� +2q� is
the coordination number in the bulk of the lattice. Within our
model q�=1 and q� =2�d−1�. This yields the following set of
self-consistent equations for the OP Mi= �Mi

�1� ,0�	�mi ,0� in
the ith layer:

Qi = I0��Jbi�/�e−��Kai−��i�� + I0��Jbi�� , �44�

and

mi = I1��Jbi�/�e−��Kai−��i�� + I0��Jbi�� . �45�

I0�z� and I1�z� are the modified Bessel functions of the first
kind, T is the temperature. We have introduced

bi 	 mi−1 + q�mi + mi+1 for i � 1,L̄ , �46�

b1	q�m1+m2, and bL̄	mL̄−1+q�mL̄, and analogously

ai 	 Qi−1 + q�Qi + Qi+1 for i � 1,L̄ , �47�

a1=q�Q1+Q2, and aL̄=QL̄−1+q�QL̄. The coupled sets of
equations for Qi and mi are solved numerically by standard
methods of multidimensional root finding. The equilibrium
solution minimizes the free energy per number of lateral lat-

tice sites F	F�0
/ Ā:

f = �
i=2

L̄−1 � J

2
�mi−1mi + q�mi

2 + mi+1mi� +
K

2
�Qi−1Qi + q�Qi

2

+ Qi+1Qi� + kBT�
i=1

L̄

ln�1 − Qi� + f1 + f2, �48�

where

f1 =
J

2
�q�m1

2 + m2m1� +
K

2
�q�Q1

2 + Q2Q1� �49�

and

f2 =
J

2
�mL̄−1mL̄ + q�mL̄

2� +
K

2
�QL̄−1QL̄ + q�QL̄

2� . �50�

The above equations neglect the helicity, i.e., Mi= �Mi
�1� ,0�

	�mi ,0�. In general the helicity might be nonzero because

the BCs for the superfluid OP are effectively nonsymmetric,
i.e., M1�0 whereas ML=0 so that the superfluid OP can in
principle rotate across the film. The relevance of the helicity
on the Casimir force will be analyzed elsewhere.

C. Results for 3He-4He mixtures

First, we have analyzed the semi-infinite system. Close to
the line of bulk critical points we have found a higher 4He
concentration near the surface �chosen to be the left side of
the system�, which induces a local superfluid ordering. By
varying T and � one obtains a line of continuous surface
transitions corresponding to the onset of the formation of this
superfluid film near the wall; it meets the line of bulk critical
points at a so-called special transition point, the position of
which depends on the value of ��l� �see Fig. 4�. These find-
ings are in agreement with the results of a Migdal-Kadanoff
analysis �29�.

In the film geometry the Casimir force fC �Eq. �2�� is

obtained by calculating fex�L̄� �see Eq. �3�� for L̄ and L̄+1
and taking the difference. �Note that in the lattice model f is

the total free energy of the film per number L̄Ā of lattice sites

and fb is the bulk free energy density per L̄Ā. Accordingly

fex�L̄�= �f − fb�L̄ / �kBTt�, fC=−�fex /�L̄, as well as �= fCL̄d

with d=3 near tricriticality and d=4 near the � transition are
dimensionless. In order to avoid a clumsy notation we do not
introduce different symbols for the lattice and the continuum
versions of the free energies.� Figure 5 summarizes our result

for a film of thickness L̄=20, K /J=0.5, ��l� /J=−3, and
��r�=�t /J�0.61, which is the tricritical bulk value. Such a
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FIG. 5. �Color online� Dimensionless scaling function ��ȳ
= tL̄�= fCL̄3, with t= �T−Tt� /Tt and L̄=20 for the Casimir force cal-
culated within MFT for the VBEG model along the paths of fixed
concentration of 3He shown in Fig. 4. Dots indicate the correspond-
ing onset temperature Ts�X� of superfluidity at the line of bulk criti-
cal points. The full line for ȳ�0 corresponds to the temperatures of
the onset of the first-order phase separation in the bulk �see Fig. 4�.
In view of, cf., Fig. 9 we note that the curves might still shift if

calculated for larger values of L̄.
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choice of the surface coupling constants corresponds to non-
symmetric BCs and is consistent with the assumption made
in Ref. �4� for the concentration profile across the wetting
film, whereupon at the interface with the vapor the 3He con-
centration takes the bulk value. For temperatures above the
bulk coexistence line at first-order demixing transitions fC is
calculated along the thermodynamic paths indicated in Fig. 4
which correspond to fixed 3He concentrations X. Our selec-
tion of X covers the tricritical region as well as the crossover
to the critical superfluid behavior of pure 4He, i.e., X=0. In
order to calculate the force at a fixed value X0 we first deter-
mine ��X=X0 ,T� by solving the two coupled self-consistent
equations for Q�� ,T�=1−X and M�� ,T� in the bulk �Eqs.
�12� and �13� in Ref. �20��. For each temperature along the
thermodynamic paths indicated in Fig. 4 we solve Eqs. �44�
and �45� with this value ��X=X0 ,T�. This renders the pro-
files Q�l� and m�l� and allows us to calculate the free energy
from Eq. �48�. When upon lowering the temperature the
paths of constant X reach the coexistence line of two-phase
coexistence �see Fig. 4� we continue our calculations along
the coexistence line, infinitesimally on the superfluid branch
of bulk coexistence. In Fig. 5 this leads to the full line for
T�Tt, i.e., y�0.

Contrary to the LG model, for the present microscopic
model it is natural to express the properties of the system as
functions of the experimental thermodynamic fields t and
��−�t� / �kBTt� or the scaling fields t and g �see Eq. �17��.
Accordingly, we present our results for the Casimir force in
terms of the scaling function defined through the relation �

	 L̄3fC as a function of only a single scaling variable ȳ

	 tL̄1/�= ��L /a� / �� /�0
+��1/�. �0

+= �̄0
+a is the amplitude of the

order parameter correlation length �=�0
+t−�= �̄a above Tt and

��d=3�=1. The second relevant scaling variable x	gL̄2 also
varies along a path of fixed 3He concentration �see Fig. 6�
and a proper scaling description has to account for it. How-
ever, in order to be able to compare our results with the
presentation of the corresponding experimental ones �4�, we
follow Ref. �4� where the variation of x has been neglected.
As can be inferred from the phase diagram in Fig. 6, the g
components of the paths X=const in the phase diagram are
smaller than the t components, so that the form of the scaling
function for these paths are expected be close to ��x=0,y�.
Also experimentally the variation of the scaling variable g
along the path of fixed X cannot be determined easily.

Near the tricritical point paths of constant X cross three
different phase transition lines: the surface transition line, the
line of bulk critical points, and the line of first-order phase
coexistence. As shown in Fig. 5, close to the surface transi-
tion fC is small and this transition does not leave a visible
trace in its behavior. fC remains small up to the coexistence
line or to the line of bulk critical points for X�Xt or X
�Xt, respectively. There it increases very steeply and for
3He concentrations X�Xt upon crossing the line of bulk
critical points there is a break in slope �see the dots in Fig. 5�
giving rise to the formation of shoulders which are similar to
those observed experimentally �4�. When T reaches the tem-
perature of first-order phase separation, fC is given by the
curve �full line for y�0 in Fig. 5� common to all values of

X. These curves of constant X meet the full line with differ-
ent slopes.

The aforementioned common curve exhibits a pronounced
maximum below Tt at y�−0.74 and gradually decreases to
zero for y→−�. The properties of the Casimir force in this
temperature region can be attributed to purely interfacial ef-
fects. Indeed, we observe that below Tt both the concentra-
tion and the superfluid OP profile corresponding to this com-
mon curve display an interfacelike structure separating two
domains of the coexisting bulk phases �see the case t
=−0.0633 in Fig. 7�. This film phase is soft with respect to
shifts of the interface position and is similar to the one oc-
curring in Ising-like films with opposite BCs �30� for tem-
peratures below the bulk critical temperature but above the
wetting temperature of the confining walls, in which case the
Casimir force is repulsive with a pronounced maximum oc-
curring below the bulk critical temperature �31�. In general a
positive sign of the force can be regarded as a consequence
of entropic repulsion �32�. Typically the maximum of the
force occurs at that temperature T at which the interfacial
width, which is proportional to the bulk correlation length �
of the order parameter, becomes comparable with the width
L of the film. In the present case both the concentration and
the superfluid OP profile contribute to the free energy and
hence to the Casimir force. Their interfacial widths are pro-
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FIG. 6. �Color online� Bulk phase diagram for the VBEG model
in the �� ,T� plane obtained within MFT for the same set of param-
eters as in Fig. 4. The long-dashed coexistence line corresponds to
the continuous superfluid transitions whereas the solid coexistence
line corresponds to the curve of first-order phase separation. As
indicated in the inset g and t are the two relevant scaling variables
�compare Eq. �17��; the line g=0 is tangential to the coexistence
line at the tricritical point where the lines of first- and second-order
transitions merge. Note that according to Eq. �17� along the line g
=0 one has ��−�t� / �kBTt�=−a�t and along the line t=0 one has
g= ��−�t� / �kBTt�. Three thermodynamic paths of constant concen-
tration are shown: X=Xt, X=Xt−0.005 �upper line�, and X=Xt

+0.005 �lower line�. We note that along the paths of constant con-
centration both scaling variable t and g vary; however, the variation
of t is more pronounced so that within a rough approximation g can
be considered to be constant along each path.
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portional to correlation length � associated with concentra-
tion fluctuations and to the OP correlation length �, respec-
tively. As can be seen from Figs. 7 and 8, within MFT these
interfacial widths and therefore � and � are comparable. Ac-
cordingly, by analogy with Ising-like systems �30� we expect
that within MFT the maximum of the force occurs when �
�or, equivalently, ���� is of the order of L, which is actually
consistent with what is observed in Fig. 5, where the maxi-
mum of the scaling function is located at y�−1. We may
expect that also in the actual system the occurrence of the
maximum of the Casimir force below the tricritical point can
be attributed to such interfacial effects. However, since the
correlation length of the superfluid OP �=� in the superfluid
phase it is not yet clear which length scale governs the inter-
facial width of the superfluid OP profile in the “soft mode”
phase below Tt and hence what length scale determines the
position of the force maximum.

For X�Xt−0.05 we observe a crossover to the critical
superfluid behavior of pure 4He and a gradual formation of a
second, less pronounced local maximum located slightly be-
low the line of bulk critical points �y�0 in Fig. 5�. This local
maximum decreases upon departing from Xt and finally fC
becomes vanishingly small along paths which cross the line
of bulk critical points above the special transition S �see Fig.
4�. This is expected, because above S there is no longer a
superfluid film formation near the solid substrate for thermo-
dynamic states corresponding to the bulk “normal” phase of
a fluid close to the line of bulk critical points. This means
that the superfluid OP in the film is identically zero up to the
line of bulk critical points and the BC effectively turn into
the type �O ,O� for which fC vanishes within MFT. �For
�O ,O� BC fluctuations beyond MFT generate an attractive
Casimir force fC�0 �10�.� For lower T, fC increases steeply
upon approaching bulk coexistence revealing that interfacial
effects associated with the soft mode lead to a much stronger

Casimir effect than the critical fluctuations near the line of
bulk critical points.

IV. RESULTS FOR PURE 4He

A. The limiting case of the VBEG model

In this section we consider the limiting case �→−� in
which all lattice sites are occupied, i.e., ti→1. In this case
the first term of the bulk Hamiltonian Hb in Eq. �34� corre-
sponds to the classical XY model �the planar rotator model�
for pure 4He and therefore, as far as the bulk contribution is
concerned, the partition function of the VBEG model re-
duces to that of the XY model up to a factor eKzN where N is
the number of lattice sites. The corresponding MFT equa-
tions for the bulk OP can be inferred from Eqs. �44� and �45�
with mi	M yielding

Q = 1, M =
I1��qJM�
I0��qJM�

�51�

for temperatures below the bulk superfluid transition, which
is located at Ts�X=0�=T�=qJ /2, and Q=1, M =0 above T�

=Ts�X=0�. The scaling behavior of the free energy and of the
Casimir force close to this critical point �see below� is con-
sistent with an upper critical spatial dimension d*=4. The
crossover to the tricritical behavior with d*=3 and with tri-
critical exponents occurs only upon approaching the tricriti-
cal point A= �Tt /Ts�0�=2/3 ,Xt=1/3� �see Fig. 4�.

In the slab geometry we take also the limits ��l�, ��r�

→−� which, together with the absence of external fields
coupling to the superfluid OP, lead to the �O ,O� BC for the
superfluid OP. Thus this limiting case allows us to study the
Casimir force for wetting films of pure 4He near the super-
fluid transition at Tc=T�. We remark that in the slab geom-
etry the superfluid transition is actually of the Kosterlitz-
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FIG. 8. �Color online� �a� 3He concentration profile X�l�=1

−Ql and �b� superfluid OP profile ml for a VBEG film of width L̄
=60 for K=0.5J, ��l� /J=−�, and ��r� /J= +� corresponding to the
state points �, �, and � indicated in Fig. 4 with t= �T−Tt� /Tt.
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FIG. 7. �Color online� �a� 3He concentration profile X�l�=1
−Ql and �b� superfluid OP profile ml for a VBEG film of thickness

L̄=60 for K=0.5J, ��l� /J=−3, and ��r� /J=�t /J�0.61 correspond-
ing to the state points �, �, and � indicated in Fig. 4; t= �T
−Tt� /Tt.
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Thouless type �33�. However, this change of the character of
the transition is not captured by MFT. The corresponding set
of equations for the superfluid OP in the lth layer of the slab
is

ml =
I1��Jbl�
I0��Jbl�

, bl 	 ml−1 + q�ml + ml+1 for l � 1,L̄ ,

�52�

where b1	q�m1+m2 and bL̄	mL̄−1+q�mL̄. The equilibrium
free energy divided by the number A of lattice sites within
one layer takes the form

f = �
l=2

L̄−1 � J

2
�ml−1ml + q�ml

2 + ml+1ml�� +
J

2
�q�m1

2 + m2m1�

+
J

2
�mL̄−1mL̄ + q�mL̄

2� + kBT�
l=1

L̄

ln�I0��Jbl�� , �53�

where ml, l=1, . . . , L̄, are the solutions of Eq. �52�. Solving
Eq. �52� for different widths of the film we have found that
the superfluid OP profile vanishes for temperatures larger

than a certain Tc�L̄��Ts�X=0�=T� which can be identified

with the critical temperature Tc�L̄� of the slabs. Below Tc�L̄�
the corresponding Casimir force turns out to be negative
�i.e., attractive� as expected for the �O ,O� BC pertinent to
the case of pure 4He. The lattice calculations have been car-
ried out for d=3 and are presented in terms of the scaling

function �0(y=��L /�0
+�2)	 L̄dfC with d=4 in accordance

with MFT and �	�T−T�� /T�. Within lattice MFT the actual
space dimensionality d of the lattice does not influence the
shape of the scaling function in the scaling limit ����0�
=�0

+�−��a; indeed, it enters only into the nonuniversal am-
plitude �0

+ via the ratio q� /q= �2d�−1 between the bulk inter-
layer and the total site coordination numbers q� and q, re-

spectively. �0 has been calculated for L̄=20, 40, and 60 and
is plotted in Fig. 9 as a function of y	��L /�0

+�1/� with the
MFT value �=1/2. Exploiting the fact that within MFT
����0� is finite we have determined the amplitude �0

− of the
correlation length ����0�=�0

−�−��−� from the exponential
approach of the OP profiles towards the corresponding bulk
values mb which are actually attained in the middle of the
film �see Fig. 10� at temperatures sufficiently below Ts�X
=0� �see, e.g., Fig. 21 in Ref. �34��. The MFT universal

amplitude ratio �0
+ /�0

−=�2 then yields the estimate �̄0
+�0.41

for the VBEG model on the lattice. We emphasize here that
scaling of the force data occurs only for surprisingly thick

films, i.e., L̄�60, as revealed clearly by the analysis pre-
sented in the next subsection.

B. Comparison with the Landau-Ginzburg theory

In Ref. �34� within MFT for the O�2� LG continuum
theory �see Eq. �1� with v0=0� the order parameter profiles
�= (m�z� ,0) in a slab with the �O ,O� BC have been calcu-
lated analytically �see Eqs. �202� and �203� in Appendix D in
Ref. �34��. It turns out that as a function of the scaling vari-

able y=��L /�0
+�1/�=r0L2 �where r0� is the coefficient ap-

pearing in Eq. �1�� the mean-field OP profile m�z� vanishes
for y�ym	−�2, whereas it is nontrivial for y�ym, breaking
the original O�2� symmetry. This occurs for temperatures
below the shifted critical point of the film which therefore
corresponds to y=ym �see Ref. �35��. In Fig. 10 we compare
the OP profiles �normalized by the corresponding bulk values
as to obtain universal scaling functions of y and z /L� calcu-

lated within the VBEG model �for a lattice with L̄=150� and
within LG continuum theory for a selection of values of the
scaling variable y. The agreement between the profiles is
very good, although the VBEG profiles exhibit a slight asym-
metry with respect to z /L=1/2 which is due to the limited
numerical accuracy of the lattice calculation.

The knowledge of the analytic expression for m�z� allows
one to compute the stress tensor �Eq. �4�� as a function of the
scaling variable y:
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FIG. 9. �Color online� Mean-field scaling function �0(y

=��L /�0
+�2)= fCL̄4 for the limiting case of the VBEG model �sym-

bols� corresponding to pure 4He and various film thicknesses L̄ with
�= �T−T�� /T�. The full curve corresponds to the scaling function

�̄0
LG�y� obtained from the continuum O�2� LG theory within MFT

�Eqs. �55� and �56�� with the amplitude Am=Am�L̄� and the position

of the minimum ym=ym�L̄� determined in such a way as to provide
the best fit to �0 from the VBEG model; for further details see the
main text. With this rescaling the continuum theory provides a very

good fit �here shown only for L̄=60� to the numerical data. The

insets show the L̄ dependence of Am and ym used as fitting param-

eters. The dashed line in the inset for ym�L̄� indicates the limiting
value ym=−�2 predicted by th LG model. Surprisingly, scaling—

corresponding to L̄-independent Am and ym—is not yet attained by
the numerical data of the VBEG model even for thick slabs with

L̄�60.
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Tzz =
1

2
�m��z = 0��2

= �Am

L4

4k2

�1 + k2�2� y

ym
2

, for y � ym = − �2,

0, for y � ym,
�

�54�

where Am=3�4 / �2u0� and k=k�y�ym� is the real solution of
the implicit equation

y

ym
=

4

�2 �1 + k2�K2�k� , �55�

where K�k� is the complete elliptic integral of the first kind,
such that k�y=ym�=0 and k�y→−� �=1. The stress tensor
Tzz,b in the bulk, related to the bulk free energy density fb���,
can be obtained from Eq. �54� in the limit L→� at fixed
reduced temperature �, yielding Tzz,b���0�=AmL−4�y /ym�2

�which is actually independent of L due to y�L2� and
Tzz,b���0�=0. Accordingly, the Casimir force fC per unit
area of the cross section of the film and in units of kBT� is
given by fC=Tzz−Tzz,b and its scaling function �0

LG=L4fC
can be derived from the expressions for Tzz and Tzz,b dis-
cussed above:

�0
LG�y� =�− Am�1 − k2

1 + k22� y

ym
2

for y � ym = − �2,

− Am� y

ym
2

for ym � y � 0,

0 for y � 0.
�

�56�

The independent calculation of �0
LG�y�, recently presented in

Ref. �36�, agrees with this expression. At y=ym=−�2 the
scaling function �56� exhibits a cusp singularity at which it
attains its minimum value �min

LG 	�0
LG�ym�=−Am�0 where

Am is given after Eq. �54�. Within MFT the coupling constant
u0 and therefore Am remain undetermined. In order to com-
pare the LG result with the VBEG results, accounting also

for corrections due to the finite size L̄ of the latter, we intro-

duce an adjusted scaling function �̄0
LG�y� which is given by

Eq. �56� with Am=Am�L̄� and ym=ym�L̄� determined by a best
fit to the VBEG scaling function �0�y� calculated for lattices

with L̄=20, 40, and 60. For all values of L̄ considered,

�̄0
LG�y� provides a very good fit to the numerical data, as

demonstrated in Fig. 9 for L̄=60. In the inset of Fig. 9 we

plot the functions Am�L̄� and ym�L̄� obtained from the fit.

According to the results of the LG theory one expects ym�L̄
→ � �=−�2�−9.87 �which is represented as a solid line in
the inset�, and indeed the results of the VBEG model show

the correct trend, although finite-L̄ corrections are still

present even for the largest lattice L̄=60 considered here,

with ym�L̄=60��−9.31. The amplitude Am�L̄� shows even

stronger corrections and indeed the value Am�L̄=60��2.45
might underestimate the actual asymptotic value by
15–20 %.

Beyond MFT the renormalized coupling constant u attains
its fixed-point value under RG flow which fixes the ampli-
tude Am and the magnitude of the corrections to the scaling
functions. This would then allow a complete numerical test
with the scaling function �0 of the VBEG model as obtained,
e.g., from Monte Carlo simulations. In Ref. �36� the ampli-
tude Am=3�4 / �2u0� �see the text after Eq. �54�� has been
estimated beyond MFT by replacing u0 by the fixed-point
value u* calculated within field theory. Although this ap-
proach provides a theoretical estimate for �Am�theo=6.92, it
fails in accounting quantitatively for the actual amplitude
�Am�exp=1.30±0.03 observed in experiments �7�.

For a given film thickness L, the position of the minimum
of the scaling function corresponds to the reduced critical
temperature �m�L�= �Tc�L�−T�� /T�=ym��0

+ /L�1/� which re-
flects the onset temperature Tc�L��Tc�L= � �=T� for super-
fluidity in the slab. For ���m the superfluid OP profile van-
ishes and so does the mean-field free energy of the film. Thus
from Eqs. �2� and �3� it follows that for T�Tc�L� one has
LdfC=−Ldfb / �kBT���−Ld�2−�=−��L1/��d�, using the hyper-
scaling relation 2−�=d�. For d=4 and �=1/2 this implies
that �0�ym�y�0��y2 �for y�0, within MFT fb=0 and
therefore fC=0� which agrees with Eq. �56�.
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FIG. 10. �Color online� Mean-field OP profiles �normalized to
the corresponding bulk values mb� across slabs of thickness L cal-

culated from the limiting case of the VBEG model �symbols, L̄
=150� and from the continuum O�2� LG theory �lines, see Eqs.
�202� and �203� in Ref. �34�� for a selection of the scaling variable
y=��L /�0

+�1/� below the shifted critical point of the film �corre-
sponding to y=ym=−�2, see the main text�. For y sufficiently nega-
tive m�z�a�−mb�exp�−z /����0�� in the middle of the slab. This

allows one to infer �̄0
−= �̄���0��−��1/2�0.29 so that �̄0

+=�2�̄0
−

�0.41.
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V. DISCUSSION OF THE RESULTS OBTAINED
FROM THE VBEG MODEL

A. 3He-4He mixtures

As one can infer from the comparison of Figs. 5 and 3 the
qualitative features of the scaling functions � for 3He-4He
mixtures extracted from the experimental data for X�Xt,
such as the sign of the force, the occurrence of the pro-
nounced maximum below Tt, and the formation of shoulders
above Tt, are well captured by the present lattice model. The
breaks in slopes upon crossing the � line shown in Fig. 5 are
features of the mean-field approach and are expected to be
smeared out by fluctuations.

The experimental data for the Casimir force fC exhibit a
maximum at tL�−18 Å which cannot be related to the con-
dition ����L borne out by the mean-field analysis �Fig. 5�
because actually, i.e., beyond MFT, �=� in the superfluid
phase. Further studies are needed to determine what length
scale governs the interfacial width of the superfluid OP pro-
file in the soft mode phase below Tt. This analysis, which is
left to future research, has to take into account that the actual
width of the interface formed in the film �see, e.g., the case
t=−0.0633 in Fig. 7�, is broadened both by the Goldstone
modes in the superfluid phase and by capillary-wave like
fluctuation.

Different from the mean-field scaling function � the ex-
perimental one does not vanish at low temperatures, which is
expected to be due to the aforementioned Goldstone modes
of the broken continuous symmetry in the superfluid phase
and due to helium-specific �15� surface induced fluctuations
which both evade the present mean-field analysis. A similar
behavior has been found in wetting experiments for pure 4He
films near the � line �2�, in which the film thicknesses above
and below the � transition are not the same, so that the wet-
ting films are thinner in the superfluid phase. For pure 4He,
Zandi et al. �15� pointed out that the Goldstone modes in-
deed lead to thinner superfluid films for T�Tc. But this
estimate is not applicable for T�T� and for T�T� it is too
small to account for the experimentally observed magnitude
of the thinning. This view of the effect of the Goldstone
modes on � is supported by Monte Carlo simulation data for
the XY model with periodic BCs �37�. The capillary wavelike
surface fluctuations, which occur on one of the bounding
surface of the superfluid 4He wetting film, give rise to an
additional force �similar in form but larger in magnitude�
which may then together explain the experimental observa-
tion �15,38�.

For a mixture, however, it is possible that the apparent
thickening of a wetting film as inferred from capacity mea-
surements might be, at least partially, an artifact due to a
significant change of the permittivity within the film �39�.
Upon inferring the film thickness from the permittivity, in
Ref. �4� it was assumed that Xfilm=Xt which does not hold at
low temperatures at which the soft mode occurs. In order to
estimate the error the assumption Xfilm=Xt introduces into
the determination of the film thickness L we repeat the cal-
culation for determining L by taking into account the inter-
facelike concentration profile below Tt �see Fig. 7� and by
assuming a mean-field-like shape:

X�z� =
1

2
�XI + XII� −

1

2
�XI − XII�tanh��z − z0�/�2��� ,

�57�

where XI and XII are the concentrations of the coexisting
bulk phases �see the triangle in Fig. 4�, z0=L /2 is the posi-
tion of the center of the interface, and � is the correlation
length associated with concentration fluctuations. We note
that � is finite in the superfluid phase whereas �=� for the
superfluid OP. The effective permittivity constant �̄ film of the
film follows from adding in series the capacitance C for each
slice of the film and from using C�� �4�:

�̄ film�X,T� =
L

�
0

L

dz/��z�
, �58�

where ��z� is related to the concentration profile via �40�

��z� − 1 = �5.697 − 1.402X�z�� � 10−2. �59�

From this we have found that neglecting at low temperatures
the variation of the concentration across the film introduces
an error in the determination of its thickness from capacity
measurements �leading indeed to an increased film thickness�
which is about 35% of the 40 Å difference in thickness re-
ported above and below Tt. Specifically, at T=0.65 K the
bulk concentrations are XI=0.325, XII=0.825, and the bulk
correlation length is �=�0 � t�−1�5.1 Å, where following Ref.
�4� we have assumed �0=1.3 Å as the value measured for
concentration fluctuations far below Tt in the superfluid
phase. Accordingly, approximating the actual inhomoge-
neous permittivity by the homogeneous one gives rise to an
error �14 Å.

In the crossover regime along the line of critical points
connecting the tricritical point and the critical � transition in
pure 4He only few experimental data for the thicknesses of
the wetting films are published. Nonetheless, the observed
variations of film thicknesses there again agree with the
present theoretical findings for the Casimir force. In particu-
lar, one observes a rapid thickening of the films upon ap-
proaching the line of bulk critical points; for specific values
of X a small maximum located slightly below the line of bulk
critical points is also visible �compare Fig. 5�.

Two reasons impede a more quantitative comparison of
our results obtained within the VBEG model with the experi-
mental ones. First, for our choice of surface terms in the
Hamiltonian the fixed-point BC �+,O� for the order param-
eter cannot be realized within the VBEG model. Taking the
limits �1→−� and �2→� in Eqs. �44� and �45� assures that

X�1�=0 and X�L̄�=1. However, even this limiting concentra-
tion profile does not induce the required BC: although

m�L̄�=0 one has m�1�= I1��Jb1� / I0��Jb1��1, i.e., the super-
fluid OP at the solid substrate is never saturated at its maxi-
mum value 1 which corresponds to the BC �+� �see Fig. 8�.
We have checked that in this limiting case with respect to
�1,2 the qualitative behavior of the Casimir force is the same;
only the magnitude of fC is slightly bigger ���0��0.5 for the
limiting case, whereas ��0��0.4 for the case shown in Fig.
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5�. In order to be able to extract universal properties—which
requires us to reach the fixed-point BC—it would be neces-
sary to introduce a surface field which couples directly to the
superfluid OP so that the BC �+� can be realized; but such a
surface field has no physical basis. Finally, even at the upper
critical dimension d=d*=3 due to logarithmic corrections
our present MFT is not sufficient. However, a naive correc-
tion of � obtained within the VBEG model by multiplying it
by the logarithmic factor �ln�L / l0��1/2 �see Eq. �33�� derived
within the LG model does not capture the proper universal
scaling behavior. Instead renormalization group schemes for
the VBEG model have to be employed.

Nonetheless, our MFT results for the scaling function �
within the VBEG model and for X=Xt, if matched with re-
spect to its amplitude with the experimental data at the tric-
ritical point y=0 and after adjusting the scaling variable y by
a factor yth such that the experimental and theoretical posi-
tions of the maximum of the scaling function are the same
�which is achieved for yth�0.065�, yield an adjusted scaling

function �̄�y� which reproduces rather well the experimental
data �see Fig. 11�, especially near the maximum where inter-
facial effects are expected to be dominant. This observation
is consistent with our interpretation that the formation of this
maximum is dominated by the occurrence of the soft mode
phase which does not depend on the details of the surface
fields. We note that according to Fig. 11 the experimental
data nominally for X=Xt more closely agree with the theo-
retical ones for X=Xt−0.01. This raises the question as to

whether the experimental 3He concentration in the film is
actually shifted relative to the bulk one.

B. Pure 4He

The theoretical models discussed in the previous sections
�VBEG and LG as lattice and continuum models, respec-
tively� capture the universal features of the collective behav-
ior close to critical �and tricritical� points, such as the Ca-
simir force. �These models have no predictive power
concerning nonuniversal properties.� The associated finite-
size scaling functions acquire universal forms if expressed in
terms of proper scaling variables, such as L /����, where ����
is the correlation length which controls the large-distance
exponential decay of the two-point correlation functions of
the OP fluctuations in the bulk at the reduced temperature �.
In systems with discrete symmetry one has ���→0−�
=�0

−�−��−� and ���→0+�=�0
+�−�, where �0

± are nonuniversal,
i.e., system-dependent, amplitudes such that the ratio �0

+ /�0
−

is universal �see, e.g., Ref. �41��. Accordingly, the scaling
function maintains its universal character also as a function
of y=��L /�0

+�1/� in the notation of Sec. IV or, alternatively,
��L /�0

−�1/�. However, in the case of pure 4He, the bulk cor-
relation length ����0� below the � transition is infinite due
to Goldstone modes and therefore �0

− cannot be defined di-
rectly from the behavior of ����0�. Alternatively, one might
define a different length scale �T���0�=�0

T�−��−� associated
with the power-law decay of tranverse correlations in the
superfluid phase, which is related to the superfluid density;
the nonuniversal amplitude �0

T forms a universal ratio with �0
+

�see, e.g., Refs. �41,42��. For pure 4He, experimental esti-
mates of ��0

T�exp range from 1.2 Å �43� to 3.6 Å �44�, de-
pending on the way it is measured. In view of this experi-
mental uncertainty and of the complication related to the
introduction of �0

T�u0�0
+ �42� within the MFT discussed in

Sec. IV, we present the comparison between experimental
data and the VBEG model in terms of the scaling variable y,
which involves the nonuniversal amplitude �0

+ the value of
which is well assessed experimentally for 4He, ��0

+�exp

=1.43 Å at saturated vapor pressure �45�, and theoretically
for the VBEG model, �0

+=0.41a within the present MFT,
where a is the lattice spacing �see the end of Sec. IV A�.
Within the LG model one has an analytic expression for �0

+

in terms of the parameters of the model �see Eq. �6.4� in Ref.
�13� for �0

+ obtained within the dimensional regularization
scheme�.

In Fig. 12 we compare the scaling function obtained from
the experimental data for the case of pure 4He �2� �for a film
thickness L=423 Å �39�� with the MF scaling function �0�y�
of the VBEG model which is universal for sufficiently thick
films. The scaling functions are normalized by their absolute
values ��min� at the minimum. In order to summarize all
available theoretical results we report in the right inset of
Fig. 12 the comparison between the experimental data for
T�T� and the scaling function obtained from the field-
theoretical � expansion ��=4−d� �13� as follows: The scal-
ing function �+O,O�y+� of the finite-size contribution of the
renormalized free energy f provided in Eq. �6.12� of Ref.
�13� has been re-expressed for N=2 �XY model� as a function

-40 -20 0 20 40

y = t L

0

5

10

15
ϑ(

y)
exp. data, X= Xt

VBEG, X=Xt

VBEG, X=Xt - 0.01

FIG. 11. �Color online� The adjusted scaling function �̄�ȳ� �see
the main text� for the VBEG model within MFT compared with the
corresponding experimental curve �4� obtained along the path of

fixed tricritical concentration X=Xt�0.672 of 3He. �̄�ȳ� is obtained
from ��ȳ� in Fig. 5 by rescaling the amplitudes of � and ȳ such that
there is agreement between the experimental data for X=0.672 at
ȳ=0 and with respect to the positions of the maximum. The VBEG
curve for X=Xt−0.01 agrees with the experimental data for nomi-
nally X=Xt even better. Both theoretical curves coincide for ȳ�0.
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of y=��L /�0
+�1/�via y+=y1/2�1+� /10 ln y�+O��2� �where y+

is defined after Eq. �4.6� in Ref. �13��. The resulting expres-
sion �+O,O�y�=�0�y�+��1�y�+O��2� is then extrapolated to
three dimensions �=1 either as �+O,O

�1,0� �y�=�0�y�+��1�y�
�yielding the solid line in the inset� or �+O,O

�0,1� �y�=�0�y� / �1
−��1�y� /�0�y�� �dashed line�, corresponding to the Padé ap-
proximants �1,0� and �0,1�. The scaling function of the Ca-
simir force is then provided by ��y�= �d−1��+,O,O�y�
− �y /���+,O,O� �y� where d=3 and ��0.67 �see, e.g., Table 19
in Ref. �41��, accounting for the actual expression of the
scaling variable y in three dimensions.

Discrepancies, such as the position ym of the minimum,
the shape of the scaling function for y�ym, the behavior for
y→−�, and the nonvanishing of �exp for y�0, can be at-
tributed to fluctuation effects neglected in the present MF
approach. Field-theoretic renormalization group calculations
beyond MFT yield a quantitative agreement with the experi-
mental data for y�0 �10,13,14� �see Fig. 12�; however, so
far this field-theoretical approach cannot be extended to the
case y�0 �38�. From the analysis of Sec. IV B it follows that
for fixed L the position ym=−�2�−9.87 of the minimum is

associated with the critical temperature Tc�L� of the film. The
experimental data exhibit the position of the minimum at
xmin=−9.8±0.8 Å1/�, where x	�L1/��2,7�, corresponding to
�ym�exp	xmin / ��0

+�exp
1/� �−5.7±0.5 which is consistent with

the experimental indication in the sense that the onset of
superfluidity in the films occurs within the range −12 Å1/�

�x�−7 Å1/� �7�, i.e., −8�y�−5. But these values of y are
considerably larger than the value −�2 predicted by the LG
approximation. In spite of the shortcomings mentioned
above the comparison between the experimental and theoret-
ical scaling function is nonetheless encouraging. The present
MF approach does not address the issue that ��min /��0��exp

�20 �4,7� whereas theoretically this ratio is �1 for periodic
BCs �38�; it is difficult to expect that this ratio reaches the
experimental value 20 corresponding to the actual �O ,O�
BC.

In passing we mention that in Ref. �36� the comparison
between Eq. �56� and the experimental data of Refs. �2,7� is
seemingly affected by an inconsistent normalization of the
experimental and theoretical scaling functions which are ac-
tually plotted as a function of ��L /�0

T�1/� �with �0
T taken from

Ref. �43�� and ��L /�0
+�1/�, respectively. This artificially re-

duces the resulting discrepancy between the experimental
and theoretical results in comparison to the one displayed in
Fig. 12.

VI. SUMMARY AND OUTLOOK

Based on mean-field analyses of the vectoralized Blume-
Emery-Griffiths model and of the continuum Landau-
Ginzburg theory as well as by applying renormalization-
group analyses we have obtained the following main results:

�i� By using mean-field theory, near the tricritical point
�Fig. 4� we have calculated the scaling functions of the Ca-
simir force within the continuum Landau-Ginzburg theory
�Eq. �1�� for the O�2� model of 3He-4He films of thickness L
�see Figs. 1 and 2�. The scaling functions depend on two
relevant scaling variables u0 and r0 �see Eq. �18��. By fitting
the amplitude of the scaling variable and the amplitude of the
Casimir force, which remains undetermined within the LG
mean-field approach, one finds a reasonable agreement with
the experimental data along the thermodynamic path of con-
stant tricritical concentration of 3He �see Fig. 3�.

�ii� The application of field-theoretic renormalization-
group analysis in spatial dimension d=3 yields the correct
asymptotic leading behavior of the Casimir force at the tric-
ritical point. As a function of the film thickness L it has the
form of a power law �L−3 multiplied by the square root of
the logarithm of L and by the universal Casimir amplitude
�Eq. �23��.

�iii� Using the field-theoretic renormalization-group
analysis we have derived the form of the finite-size scaling
for the Casimir force in the vicinity of the tricritical point
and have obtained renormalized mean-field scaling functions
�see Figs. 1 and 2�. It turns out that also one of the scaling
variables acquires a logarithmic correction �Eq. �33��.

�iv� Using mean-field approximation we have calculated
the scaling function of the Casimir force within the vectoral-
ized Blume-Emery-Griffith lattice model of 3He-4He mix-
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FIG. 12. �Color online� Normalized mean-field scaling function
�0�y� for the limiting case of the VBEG model �on a lattice with

L̄=60� corresponding to pure 4He compared with the experimental
data ���exp �2� in terms of the proper scaling variable y
=��L /�0

+�1/� using ��0
+�exp=1.43 Å for pure 4He �45� and �=0.67.

These are the universal forms of the scaling function �0. The inset
on the left shows a magnification of the main plot close to the
minimum. According to the analysis presented in Sec. IV B �see

also Fig. 9�, the position ym�L̄� of the minimum of the theoretical

curve in the scaling limit L̄=� approaches the value −�2. In the
inset on the right the experimental data �diamonds� above the criti-
cal temperature are compared with the scaling functions for the
three-dimensional XY model in a slab obtained from the � expan-
sion (see the main text: the solid �dashed� line corresponds to the
�1,0� ��0,1�� Padé approximant). Due to the experimental resolution
���exp takes only discretized values.
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tures along the thermodynamic paths of fixed 3He concentra-
tions �see Figs. 4–6�. For concentrations of 3He close to the
tricritical concentration our results are in a qualitative agree-
ment with the available experimental data �see Figs. 3, 5, and
11�. Our calculations also predict the crossover behavior of
the Casimir force along the line of critical points connecting
the tricritical point and the � transition for pure 4He. We
have found that the pronounced maximum of the Casimir
force, which occurs below the tricritical temperature, is as-
sociated with the formation of a soft mode phase within the
film �see Figs. 7 and 8�.

�v� We have analyzed the limiting case of the VBEG
model which corresponds to the classical XY model for pure
4He. Within mean-field theory we have been able to show
that for sufficiently thick films the scaling functions as ob-
tained from the lattice model for the Casimir force are in an
agreement with the ones obtained from the continuum O�2�

Landau-Ginzburg theory �see Fig. 9�. The encouraging com-
parison of the former with the experimental data is displayed
in Fig. 12.

As an outlook we propose to test experimentally the scal-
ing of the Casimir force for different thicknesses of the wet-
ting films by taking into account logarithmic corrections.
Moreover, it appears to be promising to study experimentally
in more detail the crossover of the Casimir forces between
their tricritical behavior and their critical behavior near the �
transition and to compare it with the theoretical predictions
presented here.
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